A Fractional Space-time Optimal Control Problem: Analysis and Discretization∗

نویسنده

  • HARBIR ANTIL
چکیده

We study a linear-quadratic optimal control problem involving a parabolic equation with fractional diffusion and Caputo fractional time derivative of orders s ∈ (0, 1) and γ ∈ (0, 1], respectively. The spatial fractional diffusion is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic operator. Thus, we consider an equivalent formulation with a quasi-stationary elliptic problem with a dynamic boundary condition as state equation. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We consider a fully-discrete scheme: piecewise constant functions for the control and, for the state, firstdegree tensor product finite elements in space and a finite difference discretization in time. We show convergence of this scheme and, for s ∈ (0, 1) and γ = 1, we derive a priori error estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از بهینه سازی نیمه معین مثبت برای حل مسئله ی کنترل بهینه ی سیستم های کنترلی راکتورهای مخزن همزن پیوسته ی همدما

In this paper, an optimization method is used for solving a fractional optimal control problem with significant applications in chemical engineering. The considered optimal control is the control system of the isothermal continuous stirred tank reactors. The Riemann-Liouville fractional derivative is used to describe the mathematical model of control system.  For solving the fractional optimal ...

متن کامل

A study of a Stefan problem governed with space–time fractional derivatives

This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

متن کامل

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015